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To gain insight into the kinetics of colloidal gel evolution at low particle volume fractions ϕ, we utilize
differential dynamic microscopy to investigate particle aggregation, geometric percolation, and the
subsequent transition to nonergodic dynamics. We report the emergence of unexpectedly rich multiscale
dynamics upon the onset of nonergodicity, which separates the wave vectors q into three different regimes.
In the high-q domain, the gel exhibits ϕ-independent internal vibrations of fractal clusters. The
intermediate-q domain is dominated by density fluctuations at the length scale of the clusters, as
evidenced by the q independence of the relaxation time τ. In the low-q domain, the scaling of τ as q−3

suggests that the network appears homogeneous. The transitions between these three regimes introduce two
characteristic length scales, distinct from the cluster size.
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Rich rheological behavior of colloidal gels arises from
the coexistence of multiple length and timescales that
characterize their structure and dynamics. Through particle
aggregation or phase separation, colloidal gels with low
particle volume fractions ϕ form space-spanning networks
of self-similar clusters [1–5]. Kinetically arrested, the gels
also constantly evolve towards equilibrium via structural
rearrangements triggered by thermal agitation and residual
stresses [6–12]. The ceaseless change in structure, in
turn, leads to a continuous evolution of the dynamics.
Understanding the microscopic behavior of colloidal gels,
therefore, necessitates both spatially and temporally com-
prehensive investigation. Yet, various scattering techniques
used so far to study the dynamics of gel networks have been
limited by small ranges of accessible length scales and
prolonged data acquisition during which the systems
significantly age [13–24]. This lack of breadth in exper-
imental characterization has prevented a coherent descrip-
tion of the dynamics of colloidal gels.
In this Letter, we trace the entire kinetic pathway, from

stable suspensions through aged gels, of colloidal gelation
and network evolution over large ranges of length and
timescales using differential dynamic microscopy (DDM)
[25,26]. Themotion of particles and their aggregates initially
slows down through two consecutive stages, while the
system remains ergodic. As the gel evolves, network
fluctuations become greatly suppressed, leading to the onset
of nonergodicity. Three dynamically distinct ranges of
length scales, or wave vectors q, then emerge, unveiling
structural hierarchy and macroscopic elasticity of the gel. In
the high-q domain, corresponding to length scales consid-
erably smaller than the size of the largest aggregate units, or
clusters, the network behaves as internally vibrating fractals.

In the intermediate-q domain, the dynamics is dominated by
the collective motion over the scale of the clusters. In the
low-q domain, the gel fluctuates as a homogeneous elastic
network within a viscous solvent. The transitions between
these three regimes are determined by both the structure and
the elasticity of the network, giving rise to two characteristic
length scales. This multiscale dynamics extensively des-
cribes colloidal gels from the scale of fractal aggregates to
that of a viscoelastic continuum, allowing us to estimate the
macroscopic shear modulus in the latter two regimes.
This panoramic exploration of the gels throughout their

evolution is enabled by DDM that, through optical micros-
copy, extracts information about the density fluctuations of
a sample as in scattering techniques [25]. DDM is less
susceptible to the effects of multiple scattering that
render the use of traditional far-field scattering techniques
impracticable [27]. Moreover, simultaneous access to
ensemble-averaged information at several hundreds
of q over more than two decades (q ¼ 0.05–10 μm−1)
allows the comprehensive characterization of the evolving
samples. We use a CMOS camera (Prime Mono,
2048 × 2048 pixels, Photometrics) mounted on an inverted
microscope (Eclipse TE2000-U, Nikon) with two objec-
tives of magnifications M ¼ 20×=60×, and numerical
apertures NA ¼ 0.50=1.20 (water immersion), respec-
tively. The samples are loaded in rectangular glass capillary
tubes (Vitrocom) of thickness 100 μm. We repeat some of
our experiments with thicker tubes of 200 and 300 μm to
check the reproducibility of the results, and confirm no
influence of the finite thickness. For the computation of the
normalized intermediate scattering function fðq;ΔtÞ,
where Δt denotes the delay time, we use 1000 frames
acquired at frame rates from 5 fps through 100 fps.
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We utilize polystyrene-poly(N-isopropylacrylamide)
(PS-PNIPAM) core-shell colloidal particles synthesized
by emulsion polymerization based on the protocol of
Refs. [22,28]. The details of the synthesis are described
in the Supplemental Material [29]. Because of the thin,
thermosensitive PNIPAM shell, we can precisely control
the initiation of the gelation from a fully stable suspension
simply by increasing the system temperature T above the
gelation temperatureTg ≈ 25.5 °C. The increase inT reduces
the range of the steric repulsion from the shell, allowing the
particles to aggregate by van der Waals attraction. To
minimize the effect of electrostatic interactions and sedi-
mentation, we add 0.5M of sodium thiocyanate (NaSCN) to
screen the charges, and density-match the system using a
H2O=D2Omixture of 52=48 v=v. The hydrodynamic radius
a of the particles measured via dynamic light scattering
(BI-200SM, Brookhaven Instruments) is 116.3� 1.8 nm
at 30 °C.
We initiate the gelation of a system at ϕ ¼ 0.8% by a

sudden temperature increase from 20 to 30 °C at t ¼ 0 s. To
quantify the dynamics at different t in the micrographs as
the ones shown in Figs. 1(a)–1(c), we focus on the fast
dynamics of colloidal gels due to thermal fluctuations [14],
by assuming the following form of fðq;ΔtÞ

fðq;ΔtÞ ¼ ½1 − CðqÞ� exp
�
−
�

Δt
τðqÞ

�
pðqÞ�

þ CðqÞ; ð1Þ

which represents a stretched exponential decay from one to
the nonergodicity parameter CðqÞ. Here, τðqÞ denotes the
relaxation time, and pðqÞ the stretching exponent. Because
of the subsequent relaxation due to slow restructuring of
the network [9], the large Δt behavior of fðq;ΔtÞ often
deviates from the fit, as displayed in Fig. 1(d), but this

long-time behavior is outside the scope of this work. The
details of the fitting procedures are delineated in the
Supplemental Material [29].
In the first stage until t ≈ 250 s, the particles form

aggregates, as seen in Fig. 1(a). The temporal change of
the relaxation time τðqÞ at q ¼ 4.0 μm−1 or qa ¼ 0.47,
shown in Fig. 1(e), exhibits a power law with an exponent
0.54� 0.05; this growth rate is similar to that of diffusion-
limited cluster aggregation (DLCA) [1,2]. In DLCA, the
mean hydrodynamic radius Rh of aggregates scales as
t1=df ¼ t0.57 with the fractal dimension df ¼ 1.75
[2,32,33]. Using τ ¼ 1=ðDq2Þ, where D is the diffusion
coefficient of the aggregates, and the Stokes-Einstein
relation D ¼ kBT=ð6πηRhÞ, where kB is the Boltzmann
constant and η the solvent viscosity [34], we can indeed
infer that τðtÞ obeys the same power law as RhðtÞ.
Moreover, from the static structure factor SðqÞ that we
calculate based on the squared modulus of Fourier-trans-
formed images [27,35], we find that df of the aggregates is
1.8� 0.1 [4,29], independent of t, also in close agreement
with DLCA. Although the two relations involving D
strictly apply to suspensions of monodisperse particles,
the power law exponent of τðtÞ stays nearly independent of
q, confirming the resemblance of the aggregation to DLCA.
The second stage of evolution (250 s < t < 2000 s) in

Fig. 1(e) displays a steeper power law of τðtÞ with an
exponent 1.07� 0.04, while pðtÞ monotonically decreases
to ∼0.6. We suggest that this transition to the second stage
is induced by the geometric percolation of the clusters. As
the percolation starts to constrain the displacements of the
clusters, a marked slowdown of their motion ensues,
inducing greater heterogeneity in relaxation times. The
stretched exponential relaxation of colloidal gels is gen-
erally understood as the superposition of the multiple
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FIG. 1. Micrographs showing the temporal evolution of the gel at particle volume fraction ϕ ¼ 0.8% at times t ¼ 180 s (a), 1500 s (b),
and 3600 s (c) after the onset of aggregation. Scale bars correspond to 30 μm. (d) Normalized intermediate scattering function f at
t ¼ 180 s (circle), 1500 s (triangle), 3600 s (inverted triangle), and corresponding fits (black lines) at a fixed wave vector q ¼ 4.0 μm−1

or qa ¼ 0.47, where a ¼ 116.3 nm is the hydrodynamic radius of a particle. (e) Temporal evolution of the relaxation time τ, the
stretching exponent p, and the nonergodicity parameter C at qa ¼ 0.47. Some error bars are smaller than the symbols.
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normal modes subject to overdamped dynamics, each
exhibiting a single exponential decay [14]. In this frame-
work, the distribution of characteristic timescales of the
exponentials broadens as p decreases from 1 to approx-
imately 0.65 [36]. At all t, p is largely independent of q
[29]. Despite these temporal changes in τ and p, the system
retains its ergodicity, which implies that the structural
rearrangements after the geometric percolation only gradu-
ally give rise to rigidity of the network [37,38].
After the onset of the third stage (t ≈ 2000 s) shown

in Fig. 1(e), the network fluctuations remain partially
correlated within the observation time, leading to nonzero
values of the nonergodicity parameter Cðq ¼ 4.0 μm−1Þ.
Concurrently, τðq ¼ 4.0 μm−1Þ stays nearly constant with
t. Yet, complex q dependence of the dynamics appears
upon this transition. For t < 2000 s, CðqÞ ≈ 0 while
τðqÞ ∼ q−2.2, where the power law exponent is close to
−2 of the dilute suspension of monodisperse particles in
Brownian motion [34]. For t > 2000 s, however, CðqÞ
gradually increases with t while monotonically decreasing
with q, as displayed in Fig. 2(a). Simultaneously, τðqÞ
flattens, and eventually becomes independent of q for
qa < 0.23, as shown in Fig. 2(b). This flattening of τðqÞ
marks the end of major temporal evolution, after which all
the parameters remain nearly unchanged.
For a more comprehensive inspection of the q depend-

ence of the dynamics in the aged gels, we employ two
objectives (M ¼ 20× and 60×) to extract τðqÞ of the gels at
five different ϕ (¼ 0.5, 0.8, 1.0, 1.5, and 2.0%) in their

quasisteady states at sufficiently large t. For each ϕ, three
distinct regimes of dynamics emerge, as displayed in Fig. 3.
In the remainder of this Letter, we show how this transition
into nonergodic, multiscale dynamics reveals the structure
and the macroscopic elasticity of the gels.
In the high-q domain, we observe dynamical hallmarks

of fractals. The averaged internal structure of fractal
aggregates is fully defined by df only, and indeed, τðqÞ
of all ϕ asymptotically collapse onto a single line, indicat-
ing the presence of ϕ-independent structures at the smallest
length scales probed. Furthermore, according to the model
proposed by Reuveni et al. [39,40], the internal dynamics
of a vibrating fractal under thermal perturbation and strong
viscous damping for qRg ≫ 1, where Rg is the cluster
radius of gyration, obeys the following scaling relation in
the absence of translation and rotation:

τ ∼ q−2=p: ð2Þ

We obtain p ¼ 0.66� 0.02 for all ϕ [29], which yields
the value of −2=p consistent with our high-q power law
exponent.
In the intermediate-q domain, where τ is independent of

q, the motion at the length scale of clusters dominates the
gel dynamics. In the model developed by Krall and Weitz
for fractal gels [13,14], fðq;ΔtÞ is determined by τ and the
maximummean squared displacement δ2 at the length scale
of the clusters as follows:

fðq;ΔtÞ ¼ exp

�
−
q2δ2

4

�
1 − exp

�
−
�
Δt
τ

�
p
���

; ð3Þ

which, for q2δ2 ≪ 1, can be simplified to

fðq;ΔtÞ ≈ q2δ2

4
exp

�
−
�
Δt
τ

�
p
�
þ
�
1 −

q2δ2

4

�
; ð4Þ
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FIG. 2. (a) Nonergodicity parameter C and (b) relaxation time τ
of the gel at ϕ ¼ 0.8% as a function of the nondimensionalized
wave vector qa at t ¼ 0 s (pentagon, stable suspension), 60 s
(square), 180 s (circle), 600 s (triangle), 1500 s (inverted triangle),
3600 s (diamond), and 7200 s (filled hexagon). The dashed
vertical line denotes qa ¼ 0.47 corresponding to the data in
Fig. 1.
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FIG. 3. Relaxation time τ of the aged gels in quasisteady states
as a function of the nondimensionalized wave vector qa at
ϕ ¼ 0.5% (square), 0.8% (circle), 1.0% (triangle), 1.5% (inverted
triangle), and 2.0% (diamond). Filled symbols denote data
obtained with a 20× objective and open symbols with a 60×
objective.
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an equivalent functional form to our model in Eq. (1). From
Eqs. (1) and (3) in the limit of Δt → ∞,

fðq;Δt → ∞Þ ¼ exp

�
−
q2δ2

4

�
¼ CðqÞ: ð5Þ

The resulting δ2 from curve fits to CðqÞ satisfies q2δ2 ≪ 1
for the intermediate-q domain [29]. Provided that the
microscopic elasticity of the gels is governed by the local
spring constant κ ∼ ða=ξÞβ between two particles of radius
a separated by the distance ξ within a fractal cluster, where
β is the elasticity exponent [41–43], τ and δ2 scale with ϕ as

τ ∼ ϕ−ðβþ1Þ=ð3−dfÞ; δ2 ∼ ϕ−β=ð3−dfÞ; ð6Þ

respectively [14]. We measure the mean value of the
q-independent relaxation time τm, and observe the scalings
of τm ∼ ϕ−2.93�0.15 and δ2 ∼ ϕ−2.07�0.04. With df ¼ 1.8,
consistent values of β ¼ 2.52� 0.18 and 2.48� 0.05,
respectively, are obtained, which reflect considerable
structural rearrangements during the network formation
[29,42,44,45].
We demonstrate that our model simultaneously exhibits

the dynamics described in the two models by Reuveni et al.
[40] and by Krall and Weitz [14], as it separates the q
dependence of the characteristic relaxation time and that of
the nonergodicity into two parameters τðqÞ and CðqÞ,
respectively, in Eq. (1). The anomalous diffusion of the
subcluster aggregates is ergodic for qRg ≫ 1 [40], while
the fluctuations at the length scale of the clusters are
nonergodic [14]. Yet, the q2 term in Eq. (3) determines the
q dependence of both the timescale of the decay and the
plateau of f asΔt → ∞, by assuming nonergodic processes
at all q [14,29]. In our model, τðqÞ and CðqÞ allow
independent determination of within what time and how
far, respectively, scatterers move at each q. We thus suggest
that, at the transition between the intermediate-q and the
high-q regimes, the relaxation time of the internal vibra-
tions captured in Eq. (1) simply scales as τm, which from
Eqs. (2) and (6) leads to

qh ∼ ϕ½pðβþ1Þ�=½2ð3−dfÞ�; ð7Þ

where qh denotes the intermediate-to-high-q transition
wave vector. With p ¼ 0.66 and β ¼ 2.50, Eq. (7) yields
qh ∼ ϕ0.96�0.07. Using qh and τm to scale q and τðqÞ, we
find that our data of all ϕ collapse onto a master curve in the
plateau and the high-q domain, as shown in Fig. 4(a).
In the low-q regime, the gels display overdamped

dynamics characteristic of a homogeneous viscoelastic
medium. The effective spring constant κ between two
particles is independent of their distance ξ, if ξ is greater
than the smallest length scale L at which the continuum
assumption holds true [46]. The magnitude of the frictional
force that a scatterer experiences in a homogeneous

two-phase continuum, however, scales as its volume V
[47,48], as every differential volume undergoes the same
amount of viscous coupling between the two phases.
Because of the tenuous and porous structure of the network,
the total frictional force is expected to be proportional to the
number of constituent particles N, which in a continuum
scales as N ∼ ϕV. Thus, in the low-q domain,

τ ∼
ηaðϕV=a3Þ

GL
∼
ηϕql
Ga2

q−3; ð8Þ

where G ∼ κ=L denotes the macroscopic shear modulus,
with L chosen as the characteristic length scale of the
elastic forces and ql ¼ 2π=L. Indeed, τðqÞ at ϕ ¼ 2.0%
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FIG. 4. Relaxation time τ of all ϕ scaled with the wave vectors
at the intermediate-to-high-q transition qh (a) or the low-to-
intermediate-q transition ql (b) in the abscissa and the mean τ of
the intermediate-q domain τm in the ordinate. (c) Micrograph of
the aged gel at ϕ ¼ 0.8%. Scale bars indicate the transition length
scalesH ¼ 2π=qh ≈ 3.3 μm, andL ¼ 2π=ql ≈ 99.4 μm. (d) Stor-
age modulus G0 (square) obtained from conventional rheometry
and shear modulus G estimated from DDM in the intermediate-q
(filled circle) and the low-q (filled triangle) domains. The DDM
estimates show consistent power laws.
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exhibits the scaling of τ ∼ q−3 for qa < 0.012, as shown in
Fig. 3. For Eq. (8) to be valid at all ϕ, we expect
τðqÞ ¼ ψðϕÞq−3, where ψðϕÞ ∼ τmðϕÞqlðϕÞ3. Because
τm denotes the timescale of the floppiest mode of the
gel network, it also sets G by

G ¼ 6πηbm
τm

; ð9Þ

where bm is a correction factor [14]. Substituting the
general form of τðqÞ into Eq. (8) and using τmðϕÞ ∼
GðϕÞ−1 from Eq. (9), therefore, results in

ql ∼ ϕ0.5: ð10Þ

Scaling τðqÞ of all ϕ with the resulting ql leads to a master
curve in the low-q and the intermediate-q domains, as
shown in Fig. 4(b). The power law in Eq. (10) differs from
that of the DLCA cluster radius Rc

−1 ∼ ϕ1=ð3−dfÞ ¼ ϕ0.8

[41], since the macroscopic elasticity, as well as the
structure, governs the dynamical length scale L. We insert
scale bars of length L ¼ 2π=ql and H ¼ 2π=qh in Fig. 4(c)
at ϕ ¼ 0.8%, to visually highlight the contrast between the
length scales of the low-q and the high-q regimes.
The direct link between τ and G indicates that we can

estimate the macroscopic shear modulus G of the gels by
measuring the microscopic relaxation time τ in either the
intermediate-q domain or, as long as we can identify ql, the
low-q domain. Using Eq. (9) with bm ¼ 2.8, we observe
that the resulting values ofG yield a smooth continuation of
the storage modulus G0 obtained from conventional rhe-
ometry (AR-G2, TA Instruments), as shown in Fig. 4(d).
Alternatively, G can be estimated by measuring ψ and ql
from Fig. 3, if the power law behavior of τ ∼ q−3 is
accessible. The following rearranged form of Eq. (8)

G ¼ ηϕqlbl
a2ψ

; ð11Þ

where bl ¼ 1.2 is a correction factor, yields consistent
scaling behavior of G, as displayed in Fig. 4(d).
Our dynamical investigation of evolving colloidal gels

unveils the extensive kinetic route through particle aggre-
gation, geometric percolation, and the emergence of non-
ergodicity that establishes distinct dynamical regimes at
different length scales. In particular, we show that internal
vibrations of random fractals, cluster-dominated fluctua-
tions, and the homogeneity of a viscoelastic medium
simultaneously define the nonergodic colloidal gels.
Consequently, our results not only demonstrate links
among different models, but clarify their limits. We expect
similar applications of DDM to other types of soft matter,
such as biopolymer particle-network mixtures [49,50] or
dense suspensions of active particles [51,52], can likewise
provide comprehensive descriptions of their nonergodic,
multiscale dynamics [53].
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